395 research outputs found

    5, 7-Dihalo-8-quinolinol complex inhibits growth of ovarian cancer cells via the downregulation of expression of Wip1

    Get PDF
    Purpose: To assess the cytotoxic effect of 5, 7-dihalo-8-quinolinol complex (DHQ) on ovarian cancer cells, and the mechanism of action involved.Methods: DHQ-mediated changes in cell viability were determined using MTT assay, while apoptosis was analyzed with flow cytometry. The effect of DHQ on cell migration was determined using inverted microscopy, while its effect on invasiveness was assessed with Giemsa dyeing. FACS Caliburinstrumentation was employed for analyzing the effect of DHQ on the cell cycle. The protein expressions of Wip1 and P53 were assayed by western blotting.Results: DHQ induced cytotoxicity against A2780 and OVCAR 3 cells in the concentration range of 0.25 - 12 μM (p < 0.05). In A2780 and OVCAR 3 cells, treatment with 12 μMDHQ resulted in 69.34 and 65.46 % apoptosis, respectively. The migratory potential and invasiveness of A2780 and OVCAR3 cells were significantly decreased by 12 μMDHQ, relative to untreated cells (p < 0.05). Moreover, treatment with 12 μMDHQ arrested cell cycle at G1/G0 phase in A2780 and OVCAR3 cells, but downregulated the protein expressions of Wip1 expression in A2780 and OVCAR3 cells.Conclusion: DHQ exerts cytotoxic effect on ovarian cancer cell growth via arrest of cell cycle and activation of apoptosis. Moreover, DHQ inhibits the migratory and invasive abilities of the cells. Thus, DHQ is a potential drug candidate for the management of ovarian cancer. Keywords: 5,7-Dihalo-8-quinolinol complex, Ovarian cancer, Cytotoxicity, Apoptosis, Invasiveness, Migration, Cell cycl

    Simplifying Deep-Learning-Based Model for Code Search

    Full text link
    To accelerate software development, developers frequently search and reuse existing code snippets from a large-scale codebase, e.g., GitHub. Over the years, researchers proposed many information retrieval (IR) based models for code search, which match keywords in query with code text. But they fail to connect the semantic gap between query and code. To conquer this challenge, Gu et al. proposed a deep-learning-based model named DeepCS. It jointly embeds method code and natural language description into a shared vector space, where methods related to a natural language query are retrieved according to their vector similarities. However, DeepCS' working process is complicated and time-consuming. To overcome this issue, we proposed a simplified model CodeMatcher that leverages the IR technique but maintains many features in DeepCS. Generally, CodeMatcher combines query keywords with the original order, performs a fuzzy search on name and body strings of methods, and returned the best-matched methods with the longer sequence of used keywords. We verified its effectiveness on a large-scale codebase with about 41k repositories. Experimental results showed the simplified model CodeMatcher outperforms DeepCS by 97% in terms of MRR (a widely used accuracy measure for code search), and it is over 66 times faster than DeepCS. Besides, comparing with the state-of-the-art IR-based model CodeHow, CodeMatcher also improves the MRR by 73%. We also observed that: fusing the advantages of IR-based and deep-learning-based models is promising because they compensate with each other by nature; improving the quality of method naming helps code search, since method name plays an important role in connecting query and code

    Defense and Tolerance Technique Against Attacks and Faults on Leader-Following Multi-USVs

    Get PDF
    This study explores the leader-following consensus tracking control issue of multiple unmanned surface vehicles (multi-USVs) in the presence of malicious connectivity-mixed attacks in the cyber layer, and concurrent output channel noises, sensor/actuator faults, and wave-induced disturbances in the physical layer. Sensor/actuator faults are initially modeled with unified incipient and abrupt features. Additionally, connectivity-mixed attacks are depicted using connectivity-paralyzed and connectivity-maintained topologies through nonoverlapping and switching iterations. The standardization and observer design in multi-USVs are incorporated to decouple the augmented dynamics and estimate unknown state, fault, and noise observations, and then a defense and fault-tolerant consensus tracking control approach is designed to accomplish the robustness to disturbances/noises, resilience to attacks, and tolerance to faults, simultaneously. The criteria for achieving leader-following exponential consensus tracking of multi-USVs with cyber-physical threats can be determined based on activation rate and attack frequency indicators. Comparative simulations outline the effectiveness and economy of the proposed defense and tolerance technique against sensor/actuator faults and cyber-attacks on multi-USVs

    Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery

    Full text link
    The wide field of view (WFV) imaging system onboard the Chinese GaoFen-1 (GF-1) optical satellite has a 16-m resolution and four-day revisit cycle for large-scale Earth observation. The advantages of the high temporal-spatial resolution and the wide field of view make the GF-1 WFV imagery very popular. However, cloud cover is an inevitable problem in GF-1 WFV imagery, which influences its precise application. Accurate cloud and cloud shadow detection in GF-1 WFV imagery is quite difficult due to the fact that there are only three visible bands and one near-infrared band. In this paper, an automatic multi-feature combined (MFC) method is proposed for cloud and cloud shadow detection in GF-1 WFV imagery. The MFC algorithm first implements threshold segmentation based on the spectral features and mask refinement based on guided filtering to generate a preliminary cloud mask. The geometric features are then used in combination with the texture features to improve the cloud detection results and produce the final cloud mask. Finally, the cloud shadow mask can be acquired by means of the cloud and shadow matching and follow-up correction process. The method was validated using 108 globally distributed scenes. The results indicate that MFC performs well under most conditions, and the average overall accuracy of MFC cloud detection is as high as 96.8%. In the contrastive analysis with the official provided cloud fractions, MFC shows a significant improvement in cloud fraction estimation, and achieves a high accuracy for the cloud and cloud shadow detection in the GF-1 WFV imagery with fewer spectral bands. The proposed method could be used as a preprocessing step in the future to monitor land-cover change, and it could also be easily extended to other optical satellite imagery which has a similar spectral setting.Comment: This manuscript has been accepted for publication in Remote Sensing of Environment, vol. 191, pp.342-358, 2017. (http://www.sciencedirect.com/science/article/pii/S003442571730038X

    WaveAttack: Asymmetric Frequency Obfuscation-based Backdoor Attacks Against Deep Neural Networks

    Full text link
    Due to the popularity of Artificial Intelligence (AI) technology, numerous backdoor attacks are designed by adversaries to mislead deep neural network predictions by manipulating training samples and training processes. Although backdoor attacks are effective in various real scenarios, they still suffer from the problems of both low fidelity of poisoned samples and non-negligible transfer in latent space, which make them easily detectable by existing backdoor detection algorithms. To overcome the weakness, this paper proposes a novel frequency-based backdoor attack method named WaveAttack, which obtains image high-frequency features through Discrete Wavelet Transform (DWT) to generate backdoor triggers. Furthermore, we introduce an asymmetric frequency obfuscation method, which can add an adaptive residual in the training and inference stage to improve the impact of triggers and further enhance the effectiveness of WaveAttack. Comprehensive experimental results show that WaveAttack not only achieves higher stealthiness and effectiveness, but also outperforms state-of-the-art (SOTA) backdoor attack methods in the fidelity of images by up to 28.27\% improvement in PSNR, 1.61\% improvement in SSIM, and 70.59\% reduction in IS

    Temporal and bidirectional association between blood pressure variability and arterial stiffness: Cross-lagged cohort study

    Get PDF
    BACKGROUND: The causal relationship between blood pressure variability (BPV) and arterial stiffness remains debated. OBJECTIVE: This study aimed to explore the temporal and bidirectional associations between long-term BPV and arterial stiffness using a cohort design with multiple surveys. METHODS: Participants from the Beijing Health Management Cohort who underwent health examinations from visit 1 (2010-2011) to visit 5 (2018-2019) were enrolled in this study. Long-term BPV was defined as intraindividual variation using the coefficient of variation (CV) and SD. Arterial stiffness was measured by brachial-ankle pulse wave velocity (baPWV). The bidirectional relationship between BPV and arterial stiffness was explored using cross-lagged analysis and linear regression models, with records before and after visit 3 categorized as phase 1 and phase 2, respectively. RESULTS: Of the 1506 participants, who were a mean of 56.11 (SD 8.57) years old, 1148 (76.2%) were male. The cross-lagged analysis indicated that the standardized coefficients of BPV at phase 1 directing to the baPWV level at phase 2 were statistically significant but not vice-versa. The adjusted regression coefficients of the CV were 4.708 (95% CI 0.946-8.470) for systolic blood pressure, 3.119 (95% 0.166-6.073) for diastolic pressure, and 2.205 (95% CI 0.300-4.110) for pulse pressure. The coefficients of the SD were 4.208 (95% CI 0.177-8.239) for diastolic pressure and 4.247 (95% CI 0.448-8.046) for pulse pressure. The associations were predominant in the subgroup with hypertension, but we did not observe any significant association of baPWV level with subsequent BPV indices. CONCLUSIONS: The findings supported a temporal relationship between long-term BPV and arterial stiffness level, especially among people with hypertension

    Altered Gut Microbiota in Myasthenia Gravis

    Get PDF
    Myasthenia gravis (MG) is an autoimmune-mediated disorder, the etiology of which involves both environmental factors and genetics. While the exact factors responsible for predisposition to MG remain elusive, it is hypothesized that gut microbiota play a critical role in the pathogenesis of MG. This study investigated whether gut microbiota are altered in MG patients by comparing the fecal microbiota profiles of MG patients to those of age- and sex-matched healthy controls. Phylotype profiles of gut microbial populations were generated using hypervariable tag sequencing of the V4 region of the 16S ribosomal RNA gene. Fecal short-chain fatty acids (SCFAs) were assessed by gas chromatographic analyses. The results demonstrated that, compared to the healthy cohort, the gut microbiota of the MG group was changed in terms of the relative abundances of bacterial taxa, with sharply reduced microbial richness, particularly in the genus Clostridium. The fecal SCFA content was significantly lower in the MG group. Furthermore, microbial dysbiosis was closely related to the levels of inflammatory biomarkers in the sera of MG patients
    • …
    corecore